

Name: _____

Date: _____

Math 12 Honors Section 5.8 Graphing Challenging Logarithmic Functions:

1. If the value of the base becomes a variable “ x ”, then how would it affect your logarithmic function?
Explain: ie: $y = \log(2x+1) \rightarrow y = \log_x(2x+1)$
2. Suppose “ a ”, “ b ”, “ c ” and “ d ” are all positive values, indicate how you would find all the vertical asymptotes? $y = \log_{ax+b}(cx+d)$ Explain:
3. Suppose “ a ”, “ b ”, “ c ” and “ d ” are all positive values, indicate how you would find all the vertical asymptotes? $y = \log_{ax+b}(cx^2 - d)$ Explain:
4. What is the domain and range of the function: $y = \log_{x^2}(x-6) - 1$. What are the “ x ” and “ y ” intercepts?
5. Describe the graph of $y = \log_{x+3}(2x+6) + 17$.
6. What is the difference between the two graphs? How are the domain and range different?
Explain: $y = \log_x(3x+1)$ vs $y = \log_x(3x-1)$
7. What are the asymptotes of the equation: $y = \log_x(x^2 + 9)$. Explain:

8. Indicate the equations of the asymptotes, domain and range, and also the value of "y" as "x" goes to extreme values:

<p>a) $y = \log(4x^2 - 25)$</p> <p>Asymptotes:</p> <p>Domain & Range:</p> <p>Extreme Values:</p>	<p>b) $y = \log(3x^2 - 16) + 1$</p> <p>Asymptotes:</p> <p>Domain & Range:</p> <p>Extreme Values:</p>
<p>c) $y = \log(2x^2 + 25) - 4$</p> <p>Asymptotes:</p> <p>Domain & Range:</p> <p>Extreme Values:</p>	<p>d) $y = \log[x^3 - x^2] - 2$</p> <p>Asymptotes:</p> <p>Domain & Range:</p> <p>Extreme Values:</p>
<p>e) $y = 2 \log_x(5x - 4) + 2$</p> <p>Asymptotes:</p> <p>Domain & Range:</p> <p>Extreme Values:</p>	<p>f) $y = 3 \log_x(3x + 4) + 3$</p> <p>Asymptotes:</p> <p>Domain & Range:</p> <p>Extreme Values:</p>

g) $y = 3\log_{x+2}(10 - 4x) + 1$

Asymptotes:

Domain & Range:

Extreme Values:

h) $y = \log_{x+4}(4x^2 - 25) - 1$

Asymptotes:

Domain & Range:

Extreme Values:

i) $y = -2\log_{x+5}(x^2 + 4) + 3$

Asymptotes:

Domain & Range:

Extreme Values:

j) $y = \log_{x^2}(3x^2 - 25)$

Asymptotes:

Domain & Range:

Extreme Values:

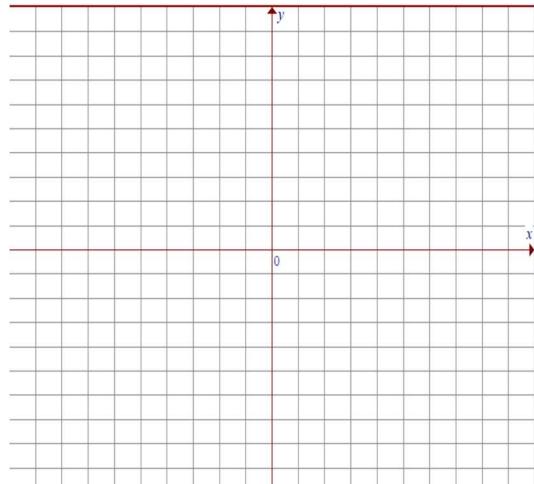
9. Graph each of the following functions. Indicate the equations of the vertical and horizontal asymptotes. Indicate the domain and range. Find the "x" and "y" intercepts if there are any:

a) $y = \log(3x^2 - 20)$

Asymptotes:

Domain & Range:

"X" and 'y' intercepts

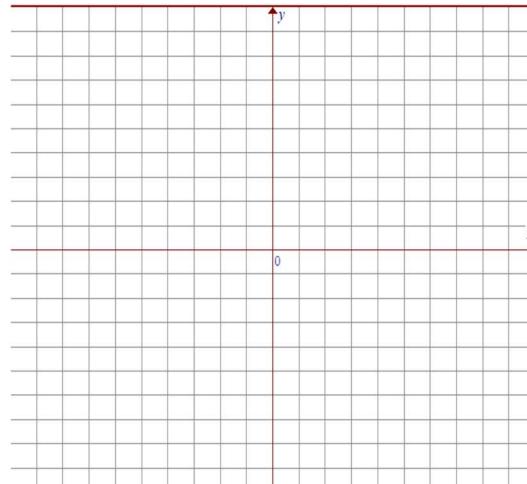


b) $y = \log(3x^2 - 20)$

Asymptotes:

Domain & Range:

"X" and 'y' intercepts

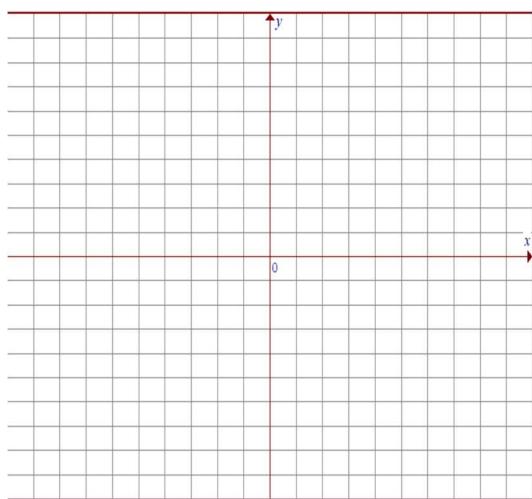


c) $y = \log[(x^2 - 1)(x + 2)]$

Asymptotes:

Domain & Range:

“X” and ‘y’ intercepts

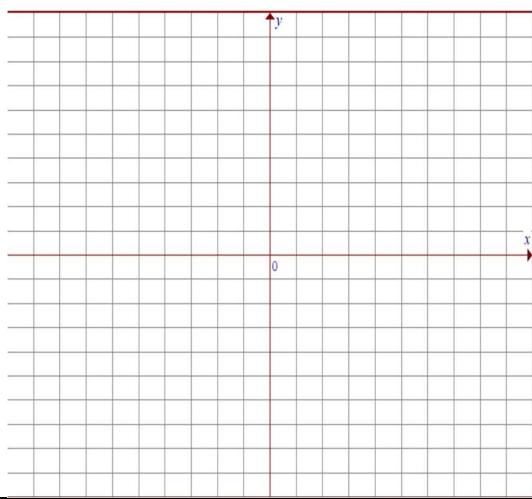


e) $y = \log(5x + 4) - 2$

Asymptotes:

Domain & Range:

“X” and ‘y’ intercepts

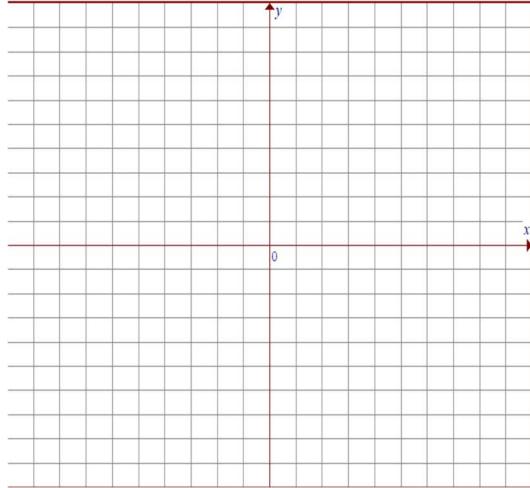


d) $y = \log_x(x + 1) + 2$

Asymptotes:

Domain & Range:

“X” and ‘y’ intercepts

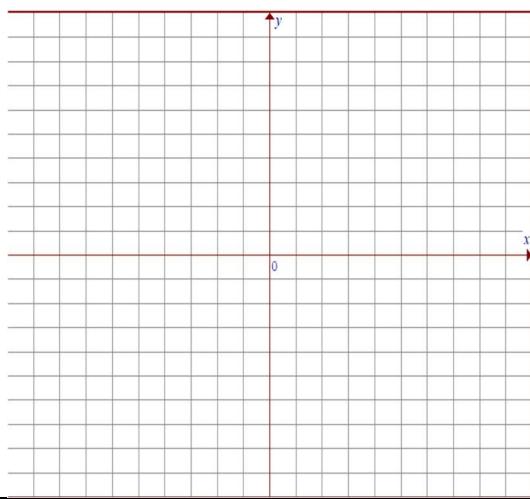


f) $y = \log_x(8 - 5x) + 1$

Asymptotes:

Domain & Range:

“X” and ‘y’ intercepts

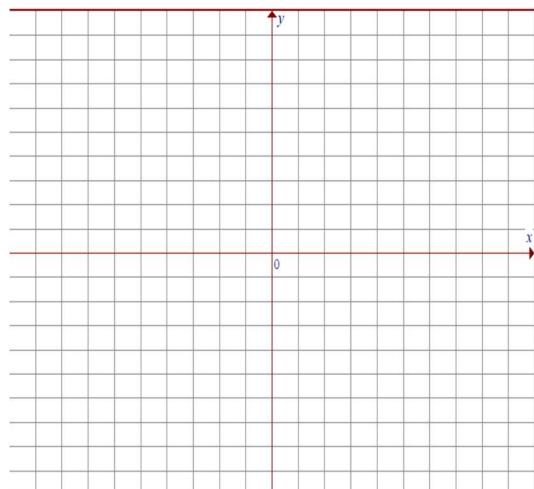


g) $y = \log_{x+1}(x^2 - 49)$

Asymptotes:

Domain & Range:

“X” and ‘y’ intercepts

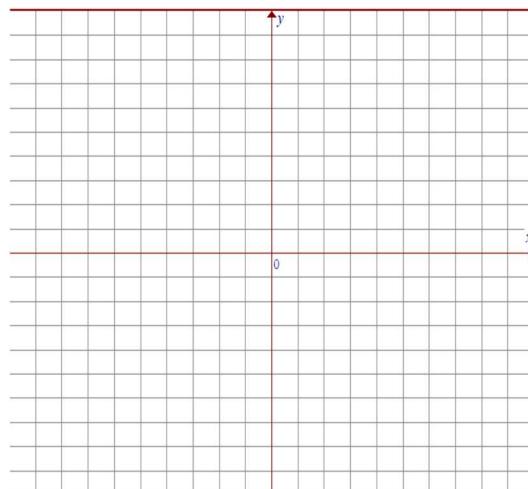


h) $y = \log_{x+7}(3x^2 - 64)$

Asymptotes:

Domain & Range:

“X” and ‘y’ intercepts



What are all real numbers $x > 0$ for which $\log_2(x^2) + 2 \log_x 8 = \frac{392}{\log_2(x^3) + 20 \log_x(32)}$?

There is a unique positive real number x such that the three numbers $\log_8(2x)$, $\log_4 x$, and $\log_2 x$, in that order, form a geometric progression with positive common ratio. The number x can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

The value of x that satisfies $\log_{2^x} 3^{20} = \log_{2^{x+3}} 3^{2020}$ can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m + n$.

There is a positive real number x not equal to either $\frac{1}{20}$ or $\frac{1}{2}$ such that

$$\log_{20x}(22x) = \log_{2x}(202x).$$

The value $\log_{20x}(22x)$ can be written as $\log_{10}(\frac{m}{n})$, where m and n are relatively prime positive integers. Find $m + n$.

Let x , y , and z be positive real numbers that satisfy

$$2 \log_x(2y) = 2 \log_{2x}(4z) = \log_{2x^4}(8yz) \neq 0.$$

The value of xy^5z can be expressed in the form $\frac{1}{2^{p/q}}$, where p and q are relatively prime positive integers. Find $p + q$.

In an isosceles trapezoid, the parallel bases have lengths $\log 3$ and $\log 192$, and the altitude to these bases has length $\log 16$. The perimeter of the trapezoid can be written in the form $\log 2^p 3^q$, where p and q are positive integers. Find $p + q$.

s

Let x , y , and z be real numbers satisfying the system

$$\begin{aligned}\log_2(xyz - 3 + \log_5 x) &= 5, \\ \log_3(xyz - 3 + \log_5 y) &= 4, \\ \log_4(xyz - 3 + \log_5 z) &= 4.\end{aligned}$$

Find the value of $|\log_5 x| + |\log_5 y| + |\log_5 z|$.